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1. Introduction 
 
Fiber Bragg grating (FBG) is proving to be one of the 

most important recent developments in the field of the 
optical fiber technology. FBGs basically constitute 
generalized distributed reflectors whose reflection spectra 
and dispersion characteristics are wavelength-dependent 
and can be accurately adjusted by proper design. They can 
effectively be used for dispersion compensation in high-
bit-rate, long-haul fiber communication links. The main 
peak in the reflection spectrum of a finite length Bragg 
gratings with uniform modulation of the index of 
refraction is accompanied by a series of side lobes at 
adjacent wavelengths.  It is important in some applications 
to lower and if possible eliminate the reflectivity of these 
side lobes, or to apodize the reflection spectrum of the 
grating. For example, in the dense wavelength division 
multiplexing (DWDM), it is important to have a very high 
rejection of the nonresonant light in order to eliminate 
cross talk between information channels, and therefore, 
apodization becomes necessary. 

The apodization of the fiber gratings using a phase 
shift mask with variable diffraction efficiency has been 
reported by Albert et al. [1]. A cosine apodization 
technique obtained by repetitive, symmetric longitudinal 
stretching of the fiber around the center of the grating, 
while the grating was written, has been recently reported 
by Kashyap et al. [2]. The simplicity of this technique 
allows the rapid production of fiber gratings required for 
the WDM systems and dispersion compensation [3]. 

 
 
2. Mathematical model 
 
The refractive index variation is considered to be [4]: 

 

            ))]}(2)[cos((2)(1{)( zzKzhznzn oo φσ +++= ,        (1) 
where no is the fiber refractive index, h(z) describes the 
amplitude variation of the induced refractive index 
modulation, σ(z) is the background refractive index 
variation, ooK Λ= /2π  is the reference Bragg wave 
vector (Λo is the reference Bragg period), and φ(z) is the 
slowly varying grating phase. In the case of linearly 
chirped gratings, 2)( CzKz o=φ , where C (in m-1) is the 
chirp parameter.  

The total variation of the local Bragg wavelength 
across the entire grating length L is given by: 
 

                           CLoB λλ 2=Δ ,                        (2) 
 
where λo = 2noΛo is the reference Bragg wavelength,  

The amplitude variation, h(z),  is, in general, 
expressed as: 
 
                              )()( xfhzh o=                        (3) 

 
where ho is the peak refractive index modulation and f(x) 
is the apodization profile.  

The electric field distribution along the grating can be 
expressed in terms of two counter propagating waves as 
[5]: 

 
)]}()2/1()/[(exp{)()]}()2/1()/[(exp{)()( zzizvzzizuzE oo φπφπ +Λ+++Λ−= ,   
(4) 

 
where u(z) and v(z) are slowly varying amplitudes of the 
forward and backward traveling waves, respectively. The 
evolution of the amplitudes u(z) and v(z) is described by a 
set of two coupled differential equations, namely: 
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The parameters Δ and δ(z) represent the wave number 

detuning from the reference wave number π/Λo and the 
local detuning along the grating, respectively, and k(z) 
represents the local coupling constant. The boundary 
conditions of this particular scattering geometry are u(0) = 
1 and v(L) = 0. 

The main apodization profiles, considered in the 
present investigation are [6 and 7]: 

 
1) Sine profile: 
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3) Positive-Tanh profile: 
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4) Blackman profile: 
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5) Gauss profile: 
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6) Hamming profile: 
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7) Cauchy profile: 
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2.1 Thermal effects 
 
The center wavelength, λB, of the back-reflected light 

from a uniform FBG is defined by: 
 

λB =2Λ neff,                                  (14) 
 
where Λ is the grating period and neff is the grating 
effective refractive index. 

The shift, ΔλBT, in the Bragg grating center 
wavelength due to temperature changes can easily be 
calculated using [8]: 
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where ΔT= (T-To), T(oC) is the heating temperature and 
To(oC) is a reference temperature. 

Equation (15) can be rewritten in the form: 
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where λo is the fiber Bragg grating center wavelength at 
To, αΛ is the thermal expansion coefficient and αn is the 
thermo-optical coefficient of the FBG. 

The signal propagating with a high power causes a 
perturbation in the molecules resulting in a nonlinearity. 
So, in addition to the temperature effect, there is also the 
nonlinear effect on the selected wavelength. Therefore, the 
total change can easily be written as: 

  

BTnonlinaer λΔ+λΔ=λΔ .                 (19) 
 
But, under the ocean depth, the temperature effect has 

a negative value. Therefore, the effect of the nonlinearity 
will appear as a compensator to the temperature effect as 
will be shown. 

 
2.2 Strain effects 
 
The shift, ΔλBS, in the Bragg grating center 

wavelength due to strain changes can easily be calculated 
from [8]: 
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where ΔL is change in FBG length due to strain. 
This shift, ΔλBS, due to an applied strain on the FBG, 

can be expressed by: 
 

ZeoBS ).P1( εΔ−λ=λΔ ,                   (21)  
 
with Pe the effective strain-optic constant defined as: 
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where P11 and P12 are components of the strain-optic 
tensor, and v is Poisson's ratio. For a typical silica: fiber 
P11= 0.113, P12= 0.252, v= 0.16, and neff = 1.482 [8]. Using 
these values, the effective strain optic constant is found as 
Pe= 0.22. 

Taking the nonlinear term into consideration, the total 
shift in the Bragg wavelength in the fiber Bragg grating 
can be written as: 

 
BSnonlinear λΔ+λΔ=λΔ .              (23) 

 
2.3 Strain and thermal effects 
 
The Bragg grating resonance, which is the center 

wavelength of back reflected light from a Bragg grating, 
depends on the effective index of refraction of the core and 
the periodicity of the grating. The effective index of 
refraction, as well as the periodic spacing between the 
grating planes, will be affected by the changes in strain 
and temperature. The shift in the FBG center wavelength 
due to strain and temperature changes is given by: 
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The first term represents the strain effect on the 

optical fiber. 
 
Including temperature, nonlinear and strain effects, 

one can write the total shift as: 
 

( )BSBTnonlinear λΔ+λΔ+λΔ=λΔ .           (25) 
 
The two terms between brackets will appear to cancel 

each other. In this case, the nonlinear term is the only 
effect on the Bragg wavelength.  

 
2.4 Pressure effects 
 
For a pressure change, ΔP, the shift, ΔλBP, in the 

center wavelength is given by [8]: 
 

P)PP2)(v21(
E2

n
E

)v21(
1112

2
eff

BBP Δ⎥
⎦

⎤
⎢
⎣

⎡
+−+

−
λ=λΔ ,       (26) 

where E is the Young's modulus of the elasticity of the 
fiber (=72 GPa). For normal silica fibers, the center FBG 
wavelength is 1550 nm and neff=1.482. 

Similar to the above cases, when the nonlinear term 
appears together with the pressure influence, the total shift 
will be: 
 

BPnonlinear λΔ+λΔ=λΔ .              (27)  
 

2.5 The FBG under the seawater 
 
Finally, when the fiber cable is found under the 

seawater, the pressure, temperature, and strain are changed 
in addition to the nonlinear effect and act to change the 
selected wavelength of the FBG. When all these 
parameters affect the Bragg wavelength, the total shift will 
be calculated from: 

 
)( BPBTBSnonlinear λΔ+λΔ+λΔ+λΔ=λΔ .        (28) 

 
3. Results and discussion 
 
3.1   Thermal effects 
 
The effect of under sea level temperature on the 

different profiles of the apodized chirped Bragg grating 
appears in Figs. 1-7. The Figures show that all the 
nonlinear cases (n2 = 2.6×10-20 m2/W) have a shift more 
than that in the linear case. So, the nonlinearity acts as a 
compensator to the negative shift due to temperature. 

In all profiles, in dashed lines, the positive shift and 
the negative shift are the same. Therefore, at an 
intermediate value for n2, there will be a zero shift in the 
Bragg wavelength. From the table we can simplify the 
following: 

 
Linear Case 
n2 = 0 m2/W 

Nonlinear Case 
n2 = 2.6×10-20 m2/W 

Apodization 
Profile 

Room 
Temp. 

Zero 
oC 

Room 
Temp. 

Zero 
oC 

Blackman 0.19 -0.37 0.25 -0.27 
Cauchy 0.09 -0.39 0.2 -0.29 

Sinc 0.11 -0.31 0.21 -0.21 
Sine 0.15 -0.35 0.25 -0.25 
Tanh 0.18 -0.38 0.28 -0.28 
Gauss 0.12 -0.34 0.22 -0.24 

Hamming 0.04 -0.4 0.14 -0.31 
 

Table 1. The shift in Bragg wavelength for different 
profiles  under  the  effect  of t he  under  seawater 

temperature. 
 

1) In the linear case, at room temperature, Cauchy 
profile is the profile that will select the 
wavelength with a very small error, while 
Blackman profile is the profile of the maximum 
error in the wavelength selection.  
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2) In the nonlinear case, all profiles having a great 
error. The Hamming one is the profile that will 
select the wavelength with the lowest error. Also, 
the Tanh profile has the maximum shift in the 
wavelength selection. 
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Fig. 1. Bragg wavelength shift as a function of 

temperature for Sine profile. 
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Fig. 2. Bragg wavelength shift as a function of 
temperature for Sinc profile. 
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Fig. 3. Bragg wavelength shift as a function of 
temperature for Tanh profile. 
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Fig. 4. Bragg wavelength shift as a function of 
temperature for Gauss profile. 
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Fig. 5. Bragg wavelength shift as a function of 
temperature for Cauchy profile. 
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Fig. 6. Bragg wavelength shift as a function of 
temperature for Hamming profile. 
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Fig. 7. Bragg wavelength shift as a function of 
temperature for Blackman profile. 

 
3.2   Pressure effects 
 
The effects of the pressure change for the apodized 

chirped Bragg grating are displayed in Figs. 8-14. All 
profiles in the linear case appear with a negative shift that 
can be compensated by the strain except the small 
pressures in the Blackman and Tanh profiles. While in the 
nonlinear case (where n2=2.6×10-20m2/W), all the profiles 
below 20 MPa have a positive shift with no compensation 
and after 20 MPa, some of the profiles begin to take a 
negative values and must be compensated. Comparing all 
profiles, so we can note the following: 

1) In the linear case, the sine profile is the 
recommended profile to select the wavelength with no 
shift (at the sea level), while the tanh profile has the 
maximum shift with a very poor wavelength selection. 

2) In the nonlinear case, all profiles are very poor in 
the wavelength selection. The Gaussian profile is 
considered to have the smallest error. 

3)  
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Fig. 8. Bragg wavelength shift as a function of pressure 
for Cauchy profile. 
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Fig. 9. Bragg wavelength shift as a function of pressure for Sine 
profile. 
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Fig. 10. Bragg wavelength shift as a function of pressure 
for Sinc profile. 
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Fig. 11. Bragg wavelength shift as a function of pressure 
for Hamming profile. 
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Fig. 12. Bragg wavelength shift as a function of pressure 
for Gauss profile. 
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Fig. 13. Bragg wavelength shift as a function of pressure 
for Blackman profile. 
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Fig. 14. Bragg wavelength shift as a function of pressure 
for Tanh profile. 

 
3.3 Ocean depth effect 
 
Under the ocean depth, both temperature and pressure 

change with certain values. The chosen values of the ocean 

depth and its pressure and temperature change are obtained 
from [9]. Fig. 15 shows the change in Bragg wavelength as 
a function of the ocean depth in the linear case where      
(n2 = 0). The solid line shows the optimum values of the 
zero shifts in the Bragg wavelength which is the optimum 
value for the Bragg grating to select any wavelength 
without any error for the low power signal (the linear 
case). Figure 16 shows the nonlinear behavior where a 
high power signal transmits through the Bragg grating. 
Obviously, the zero shift is between 1500 and 4000 m 
under the sea level. 
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Fig. 15. Bragg wavelength shift as a function of ocean 

depth for linear case. 
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Fig. 16. Bragg wavelength shift as a function of ocean 
depth for nonlinear case. 

 
 
3.4 Wavelength shift compensation by using the  
       strain effects 
 
Figs. 17 and 18 display the applied strain with 

temperature that compensates the temperature effect 
reaching to a Bragg wavelength compensation, Δλ = 0, for 
the linear and nonlinear cases, respectively.  
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Fig. 17. The change  of  the  applied  strain  with  the 
temperature under the sea level to obtain a zero shift. 
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Fig. 18. The  change  of  the  applied  strain with the 
temperature under the sea level to obtain a zero shift. 

 
Similarly, Figs. 19 and 20 display the applied strain 

with pressure that compensates the pressure effect 
reaching to a Bragg wavelength compensation, Δλ = 0, for 
the linear and nonlinear cases, respectively. In Fig. 19, the 
calculations done for the written profiles only while the 
other profiles have a positive shift. So, they cannot be 
compensated using the strain effect. Therefore, in these 
profiles, the nonlinearity will be the only compensator.  
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Fig. 19. The  change  of  the applied strain with the 
pressure under the sea level to obtain a zero shift. 
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Fig. 20. The  change  of the applied strain with the 
pressure under the sea level to obtain a zero shift. 

 
Finally, Figs. 21, 22 display the compensation Δλ = 0 

due the existence of the Bragg grating under the sea level 
where there is double shift coming from the change in 
pressure and temperature in the linear case. While  
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Fig. 21. The change of the applied strain with the ocean 
depth. 
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Fig. 22. The change of the applied strain with the ocean 
depth. 
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Fig. 23. The change of the applied strain with the ocean 
depth. 

 
Fig. 23 shows the compensation in the high power 

signals (nonlinear case). 
 
 
4. Conclusions 
 
The compensation of the Bragg wavelength shift for 

the apodized chirped Bragg grating is studied and 
investigated. It is shown that the applied strain can be used 
as a compensator to the shift in Bragg wavelength for all 
types in apodized grating in the linear case. In the 
nonlinear case, the nonlinearity can act as a compensator 
to the wavelength shift.  
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